
Symmetric Data Objects and Remote Memory Access
Communication for Fortran 95 Applications

J. Nieplocha D. Baxter V. Tipparaju

Pacific Northwest National Laboratory

C. Rassmunsen

Los Alamos National Laboratory

Robert W. Numrich

Minnesota Super Computing Institute
University of Minnesota,

Minneapoilis, MN.

Abstract. Symmetric data objects have been introduced by Cray Inc. in context
of SHMEM remote memory access communication on Cray T3D/E systems
and later adopted by SGI for their Origin servers. Symmetric data objects
greatly simplify parallel programming by allowing programmers to reference
remote instance of a data structure by specifying address of the local
counterpart. The current paper describes how symmetric data objects and
remote memory access communication could be implemented in Fortran 95
without requiring specialized hardware or compiler support. NAS Multi-Grid
parallel benchmark was used as an application example and demonstrated
competitive performance to the standard MPI implementation.

1. Introduction

Fortran is an integral part of the computing environment at major scientific
institutions. It is often the language of choice for developing applications that model
complex physical, chemical, and biological systems. In addition, Fortran is an
evolving language [1]. The Fortran 90/95 standard introduced many new constructs,
including derived-data types, new array features and operations, pointers, increased
support for code modularization, and enhanced type safety. These features are
advantageous to scientific applications and improve the programmer productivity.

Remote memory access (RMA) operations facilitate an intermediate programming
model between message passing and shared memory. This model combines some
advantages of shared memory, such as direct access to shared/global data, and the
message-passing model, namely the control over locality and data distribution.
Certain types of shared memory applications can be implemented using this approach.
In some other cases, remote memory operations can be used as a high-performance

2

alternative to message passing. On many modern platforms, RMA is directly
supported by hardware and is the lowest-level and often most efficient
communication paradigm available. The RMA has been offered in numerous portable
interfaces ranging from SHMEM [10, 11, 16], ARMCI [12], and MPI-2. Among
these, Cray SHMEM has been the most widely used interface and offered by
hardware vendors such as Cray, IBM, HP for their architectures. Some important
characteristics of SHMEM are the ease of use, simplicity, demonstrated potential for
achieving high performance.

One of the important characteristics of SHMEM is support for symmetric data
objects. This concept allows the programmer to access remote instances of data
structures through references to the local instance. In particular, the programmer is
not required to keep track of addresses on remote processors as mandated by other
RMA models such as LAPI[15] on the IBM SP where addresses for remote instances
of the same data object can be different and thus need to be exchanged and stored on
all processors. Implementation of symmetric data objects is difficult without
hardware and/or OS assistance on clustered systems. This is because the virtual
memory addresses allocated by the operating system for storing instances of the same
data structure in a cluster can be different across the machine. Without symmetric
data objects, the programmer would be required to store O(P2) addresses on the
machine. In addition, the overall programming model is harder to use and the
application codes become more error prone.

In this paper, we take advantage of the new Fortran 95 features to provide high-
level interfaces to one-sided operations on multidimensional arrays consistent with
symmetric data-object model of SHMEM. This work is inspired by Co-Array Fortran
[14] with its ability to reference arbitrary sections of so called co-arrays using high-
level array assignments. Co-arrays represent a special type of Fortran 95 arrays
defined on all tasks in the SPMD program. The main contributions of this paper are:
1) definition of an interface that support important features of SHMEM and CAF
using a library- rather than compiler-based approach: symmetric data objects of
SHMEM and one-sided high-level access to multidimensional arrays that CAF offers
(SHMEM does not offer such ability), 2) a description of a portable implementation
of these features that do not require hardware or OS support, and 3) demonstration
that the proposed approach can deliver high performance, both in context of
microbenchmarks as well as the NAS NPB Multigrid (MG) benchmark [4].

The remainder of the paper is organized as follows. Section 2 describes the
proposed interface and discusses its characteristics. Section 3 describes the
implementation based on Chasm and the ARMCI one-sided communication library.
Section 4 reports experimental results on the Linux cluster with Myrinet that
demonstrate that our implementation outperforms the NAS NPB version of MG.

2. Proposed Approach

We propose to support symmetric data objects and RMA for Fortran 95
applications based on Fortran 95 array pointers with special memory allocation
interface and a set of remote memory access communication interfaces handling slices

 3

(sections) of Fortran 95 arrays. These interfaces allow users to allocate/free
multidimensional Fortran 95 arrays and to communicate data held in this memory
using simple get/put semantics. In addition, the reference to the remote instance of
arrays does not require users to keep track of addresses on remote note. A single
Fortran 95 pointer is used to represent local and remote instances of a
multidimensional array. A unique feature of these interfaces is that they allow users to
take full advantage of Fortran 95 array mechanisms (like array-valued expressions).

The Fortran interfaces are as follows. Memory allocation is done with calls to the
generic interfaces Malloc_fa and Free_fa (shown below for real, two-
dimensional arrays only),

module Mem_F95

 interface Malloc_fa
 subroutine Malloc_2DR(a, lb, ub, rc)
 real, pointer :: a(:,:)
 integer, intent(in) :: lb(2), ub(2)
 integer, intent(out) :: rc
 end subroutine Malloc_2DR
 end interface

 interface Free_fa
 subroutine Free_2DR(a, rc)
 real, pointer :: a(:,:)
 integer, intent(out) :: rc
 end subroutine Free_2DR
 end interface

end module Mem_F95

In the above, the arrays lb and ub contain the lower and upper bounds of the array to
be allocated and the parameter rc is an error code.

Similarly, the generic interfaces for RMA communication are Put_fa and

Get_fa. To save space, here we only present the interface to the first one for the
double precision two dimensional arrays (the get interface is similar).

module Types_fa
type Slice_fa
 integer :: lo(7)
 integer :: hi(7)
 integer :: stride(7)
 end type Slice
end module Types_fa

module Mov_F95
 interface Put_fa
 subroutine Put_2DR(src, src_slc,
 dst, dst_slc, proc, rc)
 use Types_fa
 real, pointer :: src(:,:), dst(:,:)

4

 type(Slice_fa), intent(in) :: src_slc, dst_slc
 integer, intent(in) :: proc, rank
 integer, intent(out) :: rc
 end subroutine Put_2DR
 end interface

In the communication interfaces, src and dst are the source and destination

arrays respectively, src_slc and dst_slc contain information about the memory
portion (array section) of the source and destination arrays to be used, proc is the
processor number of the destination array, and rc is an error return code. In addition
to being able access sections of multidimensional arrays, to be consistent with the
Fortran 95 capabilities for arrays, the user can also specify stride information.

The current implementation supports integer, floating, and complex data types of
the 8- and 4-byte kinds. Array dimensions ranging from one to seven (Fortran limit)
are handled. By exploiting Fortran 95 function name overloading, we can use a single
name for the put operation Put_fa to handles all data types and array dimensions
using a single interface. The defined memory allocation interfaces defined above are
mandatory for allocating memory to be accessed remotely from other processors.
However, they are not required for local arrays: source of data in put, and destination
in get.

The semantics of the RMA operations (progress, ordering) follow closely that of
the Cray SHMEM. In order to provide the application programmer with abilities to
hide latency, we introduced nonblocking interfaces to put/get calls. A nonblocking
call returns before the user buffer can be accessed and requires a special wait function
to complete. This feature is not available in SHMEM. (Although the CAF standard
does not offer this capability, the Rice CAF compiler adds directives that change
semantics of the array assignments to nonblocking in so called non-blocking regions.)

3. Implementation

Unfortunately, the Fortran 95 standard alone does not provide sufficient
capabilities to implement the memory management required to support symmetric
data objects. However, this is made possible by the use of the Chasm array-descriptor
library [9]. In addition, we use the ARMCI portable RMA library to handle
communication. Our approach also relies on MPI for job startup and control. In fact,
the user can use the interfaces described in the previous section in the MPI programs
and take advantage of the full capabilities of MPI e.g., collective operations.

Chasm

Chasm [12, 3] is language transformation system providing language
interoperability between Fortran and C/C++. Language interoperability is provided
by stub and skeleton interfaces. This code is generated by language transformation
programs taking as input existing user C, C++ or Fortran source code and generating
the stub and skeleton interfaces to the input code as output [3].

 5

One of the challenges of language interoperability with Fortran is that Fortran

assumed-shape array arguments are passed by an array descriptor, rather than as a
simple memory address. Array descriptors contain meta data about the array,
including the base address of the array, the lower and upper bounds for each
dimension of the array, and sometimes, the rank of the array and the type of an array
element. The key point is that the format of the array descriptor is not specified by
the language standard, but is left to be specified by the vendor of the Fortran
compiler. Chasm provides generic C interfaces to the Fortran, vendor-specific array
descriptors. Without the Chasm array-descriptor library, there would be no way to
call the ARMCI library from Fortran and allocate Fortran 95 arrays using the special
ARMCI memory necessary for remote communication.

It should be noted that the need for the Chasm array-descriptor library will be
reduced somewhat once compiler vendors have implemented the Fortran 2003
standard [8]. Fortran 2003 contains standard mechanisms for interoperating with C
that allow Fortran array pointers to be associated with memory allocated from C. In
addition, a modified version of the Chasm, array-descriptor interface has been
accepted by the Fortran J3 committee for possible inclusion in the next Fortran
standard. This would then allow the Fortran interfaces, introduced in the previous
section, to be used in a language standard way, with no additional stub or skeleton
code needed. Until this time, either Chasm or Fortran 2003 compilers (with slightly
modified Fortran stub code) will be needed.

ARMCI

The Aggregate Remote Memory Copy Interface (ARMCI) [6] is a portable RMA
communication library. It has been used for implementing distributed array libraries
such as Global Arrays, other communication libraries such as Generalized Portable
SHMEM [10], and compiler run-time systems such as PCRC Adlib [13] or the
portable Co-Array Fortran compiler at Rice University [5]. ARMCI offers an
extensive set of functionality in the area of RMA communication: 1) data transfer
operations; 2) atomic operations; 3) memory management and synchronization
operations; and 4) locks. In scientific computing, applications often require transfers
of noncontiguous data that corresponds to fragments of multidimensional arrays,
sparse matrices, or other more complex data structures. With remote memory
communication APIs that support only contiguous data transfers, it is necessary to
transfer noncontiguous data using multiple communication operations. This often
leads to inefficient network utilization and involves increased overhead. ARMCI,
however, offers explicit noncontiguous data interfaces: strided and generalized I/O
vector that allow description of the data layout so that it could, in principle, be
transferred in a single message. Of course, the effectiveness of actual transfers
depends on the ability of underlying networks to deal with noncontiguous data (e.g.,
scatter/gather operations). However, even when scatter/gather operations are not
supported by the network, the ARMCI strided and vector operations take advantage of
the information -- for example, at the level of data packing/unpacking -- so that the
overall number of messages and network packets is reduced. The strided interfaces
are important for Fortran 95 applications that use multidimensional arrays.

6

Fortran 95 Interfaces

The C side of the implementation is composed of 10 functions. Four of the
functions are administrative functions for initializing Fortran array descriptor
information, cleaning up, terminating, and synchronizing that take no arguments. The
other six are functions for allocating Fortran 95 arrays that the ARMCI data
movement routines can handle, blocking put and get operations for the data
movement, their nonblocking analogs, and a function to free the allocated deferred
shape arrays.

These functions assume the following Fortran calling convention. When calling
routines with the deferred shape arrays (allocatable) as arguments, each deferred
shape array argument contributes two addresses to the actual argument list. The first
is the data address of the first element of the array and is in order specified in the
arguments of the Fortran call/function reference. The second is the address of the
dope vector describing the deferred shape array and is placed after the end of the
arguments listed in the Fortran call or function reference. Routines with more than
one deferred shape array have all of the addresses of the dope vectors concatenated at
the end of the argument list appearing in the same relative order as the corresponding
deferred shape array in the Fortran argument list. To support symmetric data objects
even on clusters with virtual memory nodes, we allocate extra array memory (in
addition to the user specific portion) to store array pointers on the remote nodes.
When user specifies pointer to the local instance of the Fortran 95 array, we access
the appropriate pointer for the specified processor and pass the required information
to ARMCI put/get calls.

On the Fortran 95 side of the interface there are corresponding routines to allocate,
put, get (blocking/nonblocking) and free array memory. Fortran 95 does not have the
notion of a generic pointer type, the equivalent of a (void *) in C. Each pointer in
fortran must point to an array of specified type and dimension (number of indices
used to reference elements in the array). Module procedures are used to overload the
C functionality of void *, giving a similar interface on the Fortran side where the user
does not have to use a different function name for using ARMCI routines on different
data types. Six types of elementary data are supported for one to seven dimensions
yielding 42 Fortran routines for each corresponding C function (allocate, free, put, get
and nonblocking put and get). The six Fortran data types supported are four (I4) and
eight- (I8) byte integers, four- (R4) and eight- (R8) byte floating point numbers and
eight (C4) and sixteen (C8) byte complex numbers. The following parameters provide
a portable shorthand for defining these types and are found in the definekind.Fortran
95 file:
module definekind
 integer, parameter :: I4 = SELECTED_INT_KIND(9)
 integer, parameter :: I8 = SELECTED_INT_KIND(16)
 integer, parameter :: R4 = SELECTED_REAL_KIND(5)
 integer, parameter :: R8 = SELECTED_REAL_KIND(12)
 integer, parameter :: C4 = SELECTED_REAL_KIND(5)
 integer, parameter :: C8 = SELECTED_REAL_KIND(12)
end module definekind

 7

For each operation in each of the 42 flavors, the definekind module is included

and the appropriate type and dimension arguments are declared in an interface block
to the generic C routine.

Sample RMA code using Fortran 95 interfaces

Below is a sample code snippet that allocates a couple of 50X50 arrays of integers,
src_arr and dst_arr, and does a put operation from one to another. These arrays
are first allocated with Malloc_fa interface and then src and dst slice information is
filled up before doing the put communication.

integer(kind=4),pointer::src_arr(:,:),dst_arr(:,:)
type(Slice_fa) :: src_sl,dst_sl
integer :: lb(2), ub(2), ierr
lb(:) = 1
ub(:) = 50
call Malloc_fa(src_arr,lb,ub,ierr)
if (ierr .ne. 0) call myerror()
call Malloc_fa(dst_arr,lb,ub,ierr)
if (ierr .ne. 0) call myerror()
src_sl%lo(:) = 1
src_sl%hi(:) = 25
src_sl%stride(:) = 2
dst_sl%lo(:) = 25
dst_sl%hi(:) = 50
dst_sl%stride(:) = 2
Put_fa(src_arr,drc_sl,dst_arr,dst_sl,dst_proc,ierr)

3.Experimental Evaluation

We measured the latency and bandwidth of the Fortarn 95 RMA calls with
microbenchmarks. We also ported the NAS MG benchmark to use Fortran 95. The
experimental evaluation was carried out on a 24-node dual processor Intel Itanium2
1GHz cluster interconnected with Myrcom’s GM interconnect [7]. The cluster was
running Linux version 2.4.20 operating system. We used the GM dual port E cards,
GM 2.1.4 and MPICH 1.2.5..12. For this test, we used Intel IFC Fortran 7.0 compilers
and the 2.96 version of the GNU C compiler. We also used ARMCI 1.1 and Chasm
1.1.0 for the implementation.

Microbenchmarks

We measured the latency and bandwidth of Fortran 95 RMA interfaces with a
microbenchmark that does consecutive Put and Get operations from different memory
locations and averages the time taken for each operation. This is a simple
microbenchmark that shows the bandwidth and latency of the Fortran 95 RMA

8

interfaces. In addition we also used a similar microbenchmark to measure the
bandwidth and latency of ARMCI Get and Put operations in order to measure the
overhead from using Fortran 95 interfaces that involved interface mapping and all the
dope vector manipulations. The bandwidth of the Get and Put operations for the
Fortran 95 RMA interfaces is shown in Figure 1. The figure also includes the
bandwidth of the corresponding ARMCI Put and Get calls. The overhead is
independent of the message size and it is related to the cost of duplicating dope vector
through Chasm that includes calloc system call. Based on these findings, the next
version of Chasm will include an alternative mechanism for accessing some of the
information stored in the dope vector that will be based on portable macros rather
than duplication of the dope vector. The asymptotic b/w in the above
microbenchmarks is consistent with bw numbers of Myricom GM [7].

NAS MG Benchmark

The Numerical Aerodynamic Simulation (NAS) parallel benchmarks (NPB) are a
set of programs designed at NASA. Our starting point was NPB 2.4 [4]
implementation written in MPI and distributed by NASA, we modified it to be
compiled as a Fortran 95 file. We replaced MPI calls with the Fortran 95 non-
blocking RMA interfaces. In addition to the mere replacement of the point-to-point
message passing communications part of the current message-passing version of MG
NAS kernels, an additional set of communication buffers were used to better utilize
the one-sided nature of the RMA interfaces. Figure 2 shows the performance of NAS
Fortran 95 MG version written with Fortran 95 RMA interface and is compared to the
original MPI implementation of NAS which has been compiled with Intel Fortran 95
compiler as an Fortran 95 file. Despite the overhead Fortran 95 interfaces involve,,
the RMA Fortran 95 RMA interface version of the MG benchmark outperforms the
MPI version of NAS MG benchmark for Class B and Class C and performs in par
with the MPI version for the Class A version of the benchmarks. The performance
gains are contributed to the increased asynchronicity of the RMA model as compared
to the two-sided message passing implementation of the NAS NPB MG benchmark.
Table 1 shows the percentage improvement shown by the Fortran 95 RMA interface

Figure 1- Left: Bandwidth of a contiguous Fortran 95 (labled F95 in the figure)
Put_fa compared to ARMCI put. Right: Bandwidth of the Fortran 95 Get_fa
compared to ARMCI Get operation.

M
B

ps

0

1

10

100

1000

1 10 100 1000 10000 100000 1000000 10000000

Bytes

ARMCI Put

F95 Put

M
B
p
s

0

1

10

100

1000

1 10 100 1000 10000 100000 1000000 10000000

Bytes

ARMCI Get

F95 Get

M
B
p
s

 9

implementation of NAS MG over the standard MPI implementation of NAS MG. Up
to 30% improvement can be seen.

4. Conclusions and Future Work

The current paper described how symmetric data objects and high-level array oriented
RMA interfaces can be implemented for Fortran 95 applications. The proposed
approach leads to simple yet efficient code, as demonstrated in the context of the NAS
NPG Multi-Grid benchmark. In the process of developing the interface we identified
sources of overhead involved in accessing elements of the dope vector through
Chasm. The next version of Chasm will address them by providing macros for direct
access to the information stored in the dope vector required by these interfaces. Our
future work in addition to these performance optimizations will include performance
comparisons with the Co-Array Fortran code on the Cray X1 where the native Co-
Array compiler is available as well as to the Rice compiler on Linux clusters.
The microbenchmarks show the bandwidth of the Fortran 95 interfaces. The
implementation of NAS MG using these Fortran 95 RMA interfaces outperforms the

NPROC
%improvement

over MPI-Class B
%improvement

over MPI-Class C
2 2.0 10.8
4 30.1 19.9
8 5.6 8.3
16 4.4 18.1
32 12.2 21.4

Table -1 percentage improvement over the MPI version of NAS
MG of the MG implementation using Fortran 95 RMA interface

Figure 2- Fortran 95 (labled as F95 in the figure) RMA interfaces vs. MPI
implementation of NAS MG benchmark for Class A, B and C

0.1

1

10

100

1000

0 5 10 15 20 25 30 35
Numbers of Processes

S
ec

o
n
d
s

MPI - Class A
F95 - Class A

MPI - Class B
F95 - Class B

MPI - Class C
F95 - Class C

Se
co

nd
s

10

MPI version of the benchmark demonstrating that the non-blocking one-sided nature
of RMA is preserved and utilized despite the overhead involved in pointer
calculations and dope vector manipulations.

References

1. http://www.j3-fortran.org
2. Rasmussen, C.E., K.A. Lindlan, B. Mohr, and J. Striegnitz, CHASM: Static Analysis and

Automatic Code Generation for Improved Fortran 90 and C++ Interoperability,
Proceedings of the Los Alamos Computer Science Institute (LACSI) Symposium
(CDROM), Santa Fe, NM, 2004.

3. Rasmussen, C.E., M.J. Sottile, S. Shende, and A.D. Malony, Bridging the Language Gap
in Scientific Computing: The Chasm Approach, Concurrency and Computation: Practice
and Experience, 2005.

4. D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fatoohi, S.
Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga, The NAS parallel benchmarks, RNR-94-007, NASA 1994.

5. C. Coarfa, Y. Dotsenko, J. Eckhardt, J. Mellor-Crummey, Co-Array Fortran Performance
and Potential: An NPB Experimental Study,16th International Workshop on Languages
and Compilers for Parallel Computing. 2003.

6. J. Nieplocha and B. Carpenter, “ARMCI: A Portable Remote Memory Copy Library for
Distributed Array Libraries and Compiler Run-time Systems”, Proc. RTSPP IPPS/SDP,
1999.

7. http://www.myri.com
8. http://j3-fortran.org/doc/year/04/04-007.pdf
9. http://sourceforge.net/projects/chasm-interop/
10. K. Parzyszek, J. Nieplocha, and R.A. Kendall, “A generalized portable SHMEM

library for high performance computing”, in Proc. Parallel and Distributed
Computing and Systems PDCS, 2000

11. F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie “Performance Evaluation of
the Quadrics Interconnection Network”, Journal of Cluster Computing, 6(2):
125-142, April 2003

12. CHASM: Static Analysis and Automatic Code Generation for Improved Fortran
90 and C++ Interoperability Rasmussen, C.E.; Lindlan, K.A.; Mohr, B.;
Striegnitz, J. (2001) Proceedings of the 2nd Annual Los Alamos Computer
Science Symposium 2001

13. D. B. Carpenter. Adlib: A distributed array library to support HPF translation,
1995. 5th International Workshop on Compilers for Parallel Computers.

14. Robert W. Numrich and John K. Reid, Co-Array Fortran for parallel
programming. ACM Fortran Forum, 2, 1-31, 1998.

15. G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison, R.K. Govindaraju,
K. Gildea, P. DiNicola, and C. Bender, “Performance and experience with LAPI:
a new high-performance communication library for the IBM RS/6000 SP”, in
Proceedings of the International Parallel Processing Symposium, IPPS '98,
pages 260-266, 1998.

16. R. Bariuso and A. Knies, SHMEM's User's Guide, Cray Research, Inc., SN-2516,
rev. 2.2, 1994.

